Efficiently Matching Multiple Regular Expressions

Nick Black

BetterCloud (Atlanta, GA)

December 6, 2013

Overview

We introduce techniques to match arbitrarily many POSIX Extended regular expressions, in an online fashion 1 , in linear time and polynomial space.

These techniques—arising from automata theory, abstract algebra, and formal language theory—are employed by the BetterCloud Data Loss Prevention (DLP) Engine.

¹I.e., the input can be provided piece by piece.

The **String** Problem

Given

- an alphabet Σ,
- ▶ a pattern p,
- ightharpoonup and a text t_0, t_1, \ldots, t_m ,

find and distinguish all matches.

The **String** Problem—Naïve solution

```
unsigned naive(const char *needle, const char *haystack){
        unsigned matches = 0;
        while(*haystack){
                const char *n:
                for(n = needle : *n : ++n){}
                         if(haystack[n - needle] != *n){
                                 break:
                matches += !*n:
                ++haystack;
        return matches:
}
```

 $\Omega(n)/\mathcal{O}(mn)$ time², $\Theta(1)$ space.

 $^{^{2}}m = |needle|, n = |haystack|$

Analysis of naïve solution to **String**

- State is independent of problem
- Performance worsens as the number and length of prefix matches increases
- ▶ Length of prefix matches are bounded by length of search term
- ▶ Worst case: Match at every character (m * n ops)

Search term: AAAA

Search text: AAAAAAAAAAAAAAAAA

Best case: No prefix matches (n ops)

Search term: AAAA

Can we tighten the upper bound?

The **String** Problem—Prefix skips

While verifying a match, we ought be able to eliminate other match candidates.

Search for ACGT

Search text: ACGACGT

Fail 3, skip 3, win 4 (7 ops)

Search text: AAAAAAAAAAAAAAAA

Fail 1, skip 1, fail 1, skip 1...(n ops)

Search for ATATAT

Search text: ATATATATAT

Win 6, skip 4, win 2, skip 2, win 2 (10 ops)

Search text: ATATAATATAT

Fail 6, skip 5, win 6 (11 ops)

From this insight arises the Knuth-Morris-Pratt algorithm (1977).

The **String** Problem—KMP Algorithm (preprocessing)

Construct a tabular failure function:

```
void kmptable(const char *needle, int *t){
        int pos = 2, cnd = 0;
        t[0] = -1:
        t[1] = 0:
        while(pos < strlen(needle)){
                if(needle[pos - 1] == needle[cnd]){
                         t[pos++] = ++cnd;
                }else if(cnd){
                         cnd = t[cnd];
                }else{
                        t[pos++] = 0;
        }
```

 $\Theta(m)$ time, $\Theta(m)$ space.

The **String** Problem—KMP Algorithm (search)

Search using the precomputed table:

```
unsigned kmp(const char *needle, const char *haystack,
                                         const int *t){
        unsigned matches = 0, m = 0, i = 0;
        while (m + i < strlen(haystack) {
                if(needle[i] == haystack[m + i]){
                         matches += (i == strlen(needle) - 1);
                         ++i:
                }else{
                        m = m + i - t[i]:
                         i = t[i] > -1 ? t[i] : 0;
                }
        return matches;
}
```

 $2n \in \Theta(n)$ time, $\Theta(1)$ space. The full procedure is thus $\Theta(n+m)$ time and $\Theta(m)$ space. As T is independent of the text being searched, it can be reused, yielding an amortized time $\Theta(n)$.

The **String** Problem—Other solutions

KMP is hardly the last word in string matching!

► Boyer-Moore matches from the back, and can skip characters in some cases, achieving sublinear time. Its worst case does not improve on the naïve solution:

$$\Omega(\frac{n}{m})/\mathcal{O}(mn)$$
, average $\mathcal{O}(\frac{n\log_{|\Sigma|}m}{m})$ (random text)

- **Boyer-Moore-Galil** tightens the worst case to $\mathcal{O}(n)$
- Horspool reduces state and preprocessing
- Backwards DAWG Match (1994, suffix automaton)
- ► Backwards Oracle Match (2001, factor oracle)
- ▶ Bit-parallel approaches (Shift-OR, BNDM, ...)

The **Multistring** Problem

Given

- an alphabet Σ,
- ▶ a set of patterns p_0, p_1, \ldots, p_n ,
- ightharpoonup and a text t_0, t_1, \ldots, t_m ,

find and distinguish all matches.

Note that multiple p_i might be matched at a given t_i .

The **Multistring** Problem—Naïve solution

```
unsigned mnaive(const char **needles, const char *haystack){
    unsigned matches = 0;

    while(*needles){
        matches += naive(*needles,haystack);
        ++needles;
    }
    return matches;
}
```

Iterated application of [your favorite solution to **String** here]

Tries

 $\mathcal{O}(n)$ lookup datastructure: a $|\Sigma|$ -ary rooted directed acyclic graph (a $|\Sigma|$ -tree) Basis of the **Aho-Corasick** algorithm (1975)

The **Multistring** Problem—Aho-Corasick

- Build the trie
- Augment each path with a suffix link to the longest path in the trie matching a suffix
 - Most of these will typically be the root
- ► Augment each path with a *match link* to the longest **entry** in the trie matching a suffix
 - Most of these will typically be null
- On each character of the searchtext, move through the trie. If there is no transition, traverse the suffix link chain until a transition is found, or the root has been checked.
- ► Following the transition, report matches for each element on the match link chain.

The **Multistring** Problem—Advanced Aho-Corasick

Trade space for time:

- Merge suffix link chain transitions directly into each node
- Collect match link chain as a set in each node

This solves **Multistring** in $\Theta(n)$ time, requiring space for $\Theta(P)$ nodes and $\mathcal{O}(P|\Sigma|)$ transitions $(P = \sum_{i=0}^{n} p_i)$. The preprocessing can, like in KMP, be amortized over multiple search texts.

The **Multistring** Problem—RegexEngine.java

The **MultiRE** Problem

Given

- an alphabet Σ,
- ▶ a set of regular expressions r_0, r_1, \ldots, r_n ,
- ightharpoonup and a text t_0, t_1, \ldots, t_m ,

find and distinguish all matches.

Note that multiple r_i might be matched at a given t_i .

Regular Expressions—Parse Tree

Result of parsing "(r*emol)|((umspi)*)"

GNFAs, NFAs, and DFAs

These classes of finite automata are characterized by

- A finite set of states S,
- \triangleright A finite alphabet Σ,
- ▶ A start state $s_0 \in S$,
- ▶ A set of accepting states $S_a \subset S$,

And a transition function $T(s \in S, i \in \Sigma) \rightarrow S_{next} \subset S$.

In a **GNFA**, the transitions are regular expressions on Σ . In a **NFA**, the transitions are from Σ or ϵ . In a **DFA**, the transitions are from Σ .

GNFAs are no more powerful than NFAs, which are no more powerful than DFAs!

Concatenation of two NFAs N(s) and N(t):

Initial state of N(s) becomes initial state of resulting NFA. Final state of N(t) becomes final state of resulting NFA.

Union of two NFAs N(s) and N(t):

New initial state takes ϵ -transitions to initial states of N(s) and N(t). Final states of both take ϵ -transitions to a new final state.

Kleene closure over NFA N(s):

New initial state takes ϵ -transitions to initial states of N(s) and new final state. Final states of N(s) take ϵ -transitions to new final state. Old final state takes ϵ -transition to old start.

NFA to DFA

Matching an NFA can take superlinear time, since at each step we must keep track of the current set of states, and evaluate a transition from each.

For any NFA, there exists an equivalent DFA—construct it! Powerset construction (Rabin and Scott, 1959)

Minimize the DFA:
Coarsest common refimement + radix sort (Moore, 1956)
Inverted powerset (Brzozowski, 1963)
Partition refinement/Myhill-Nerode equivalence (Hopcroft, 1971)

We can now match arbitrary text against our multiple regular expressions, in linear time. Any questions?

