
Efficiently Matching Multiple Regular Expressions

Nick Black

BetterCloud (Atlanta, GA)

December 6, 2013

Overview

We introduce techniques to match arbitrarily many POSIX
Extended regular expressions, in an online fashion1, in linear time
and polynomial space.

These techniques—arising from automata theory, abstract algebra,
and formal language theory—are employed by the BetterCloud
Data Loss Prevention (DLP) Engine.

1I.e., the input can be provided piece by piece.

The String Problem

Given

I an alphabet Σ,

I a pattern p,

I and a text t0, t1, . . . , tm,

find and distinguish all matches.

The String Problem—Näıve solution

unsigned naive(const char *needle , const char *haystack){

unsigned matches = 0;

while(* haystack){

const char *n;

for(n = needle ; *n ; ++n){

if(haystack[n - needle] != *n){

break;

}

}

matches += !*n;

++ haystack;

}

return matches;

}

Ω(n)/O(mn) time2, Θ(1) space.

2m = |needle|, n = |haystack|

Analysis of näıve solution to String

I State is independent of problem

I Performance worsens as the number and length of prefix
matches increases

I Length of prefix matches are bounded by length of search term

I Worst case: Match at every character (m ∗ n ops)
Search term: AAAA

Search text: AAAAAAAAAAAAAAAAAAA

I Best case: No prefix matches (n ops)
Search term: AAAA

Search text: BBBBBBBBBBBBBBBBBBB

Can we tighten the upper bound?

The String Problem—Prefix skips

While verifying a match, we ought be able to eliminate other
match candidates.

I Search for ACGT
Search text: ACGACGT

Fail 3, skip 3, win 4 (7 ops)
Search text: AAAAAAAAAAAAAAAAAAA

Fail 1, skip 1, fail 1, skip 1. . . (n ops)

I Search for ATATAT
Search text: ATATATATAT

Win 6, skip 4, win 2, skip 2, win 2 (10 ops)
Search text: ATATAATATAT

Fail 6, skip 5, win 6 (11 ops)

From this insight arises the Knuth-Morris-Pratt algorithm (1977).

The String Problem—KMP Algorithm (preprocessing)

Construct a tabular failure function:

void kmptable(const char *needle , int *t){

int pos = 2, cnd = 0;

t[0] = -1;

t[1] = 0;

while(pos < strlen(needle)){

if(needle[pos - 1] == needle[cnd]){

t[pos ++] = ++cnd;

}else if(cnd){

cnd = t[cnd];

}else{

t[pos ++] = 0;

}

}

}

Θ(m) time, Θ(m) space.

The String Problem—KMP Algorithm (search)

Search using the precomputed table:

unsigned kmp(const char *needle , const char *haystack ,

const int *t){

unsigned matches = 0, m = 0, i = 0;

while(m + i < strlen(haystack){

if(needle[i] == haystack[m + i]){

matches += (i == strlen(needle) - 1);

++i;

}else{

m = m + i - t[i];

i = t[i] > -1 ? t[i] : 0;

}

}

return matches;

}

2n ∈ Θ(n) time, Θ(1) space. The full procedure is thus Θ(n + m)
time and Θ(m) space. As T is independent of the text being
searched, it can be reused, yielding an amortized time Θ(n).

The String Problem—Other solutions

KMP is hardly the last word in string matching!

I Boyer-Moore matches from the back, and can skip
characters in some cases, achieving sublinear time. Its worst
case does not improve on the näıve solution:

Ω(n
m)/O(mn), average O(

n log|Σ| m

m) (random text)

I Boyer-Moore-Galil tightens the worst case to O(n)

I Horspool reduces state and preprocessing

I Backwards DAWG Match (1994, suffix automaton)

I Backwards Oracle Match (2001, factor oracle)

I Bit-parallel approaches (Shift-OR, BNDM, . . .)

The Multistring Problem

Given

I an alphabet Σ,

I a set of patterns p0, p1, . . . , pn,

I and a text t0, t1, . . . , tm,

find and distinguish all matches.

Note that multiple pi might be matched at a given ti .

The Multistring Problem—Näıve solution

unsigned mnaive(const char **needles , const char *haystack){

unsigned matches = 0;

while(* needles){

matches += naive(*needles ,haystack);

++ needles;

}

return matches;

}

Iterated application of [your favorite solution to String here]

Tries

O(n) lookup datastructure:
a |Σ|-ary rooted directed acyclic graph (a |Σ|-tree)

Basis of the Aho-Corasick algorithm (1975)

The Multistring Problem—Aho-Corasick

I Build the trie

I Augment each path with a suffix link to the longest path in
the trie matching a suffix

Most of these will typically be the root

I Augment each path with a match link to the longest entry in
the trie matching a suffix

Most of these will typically be null

I On each character of the searchtext, move through the trie. If
there is no transition, traverse the suffix link chain until a
transition is found, or the root has been checked.

I Following the transition, report matches for each element on
the match link chain.

The Multistring Problem—Advanced Aho-Corasick

Trade space for time:

I Merge suffix link chain transitions directly into each node

I Collect match link chain as a set in each node

This solves Multistring in Θ(n) time, requiring space for Θ(P)

nodes and O(P|Σ|) transitions (P =
n∑

i=0
pi). The preprocessing

can, like in KMP, be amortized over multiple search texts.

The Multistring Problem—RegexEngine.java

public List <T> match(char c){

RegexNode next = node.getTransition(c);

if(next == null){

next = automaton.startMatch (). getTransition(c);

if(next == null){

next = automaton.startMatch ();

}

}

node = next;

return node.getMatches ();

}

The MultiRE Problem

Given

I an alphabet Σ,

I a set of regular expressions r0, r1, . . . , rn,

I and a text t0, t1, . . . , tm,

find and distinguish all matches.

Note that multiple ri might be matched at a given ti .

Regular Expressions—Parse Tree

Result of parsing “(r*emol)|((umspi)*)”

GNFAs, NFAs, and DFAs

These classes of finite automata are characterized by

I A finite set of states S ,

I A finite alphabet Σ,

I A start state s0 ∈ S ,

I A set of accepting states Sa ⊂ S ,

And a transition function T (s ∈ S , i ∈ Σ)→ Snext ⊂ S .

In a GNFA, the transitions are regular expressions on Σ.
In a NFA, the transitions are from Σ or ε.
In a DFA, the transitions are from Σ.

GNFAs are no more powerful than NFAs, which are no more
powerful than DFAs!

The Thompson Construction—Part 1

Encoding the empty string:

Encoding a symbol from Σ:

The Thompson Construction—Part 2

Concatenation of two NFAs N(s) and N(t):

Initial state of N(s) becomes initial state of resulting NFA.
Final state of N(t) becomes final state of resulting NFA.

The Thompson Construction—Part 3

Union of two NFAs N(s) and N(t):

New initial state takes ε-transitions to initial states of N(s) and
N(t). Final states of both take ε-transitions to a new final state.

The Thompson Construction—Part 4

Kleene closure over NFA N(s):

New initial state takes ε-transitions to initial states of N(s) and
new final state. Final states of N(s) take ε-transitions to new final
state. Old final state takes ε-transition to old start.

NFA to DFA

Matching an NFA can take superlinear time, since at each step we
must keep track of the current set of states, and evaluate a
transition from each.

For any NFA, there exists an equivalent DFA—construct it!
Powerset construction (Rabin and Scott, 1959)

Minimize the DFA:
Coarsest common refimement + radix sort (Moore, 1956)
Inverted powerset (Brzozowski, 1963)
Partition refinement/Myhill-Nerode equivalence (Hopcroft, 1971)

We can now match arbitrary text against our multiple regular
expressions, in linear time. Any questions?

