

“The Technology Behind Crusoe™ Processors: Low-Power
 x86-Compatible Processors Implemented with
 Code-Morphing™ Software”

Alexander Klaiber
Transmeta Corporation

January 2000

presented by nick black <nickblack@linux.com> for cs8803dc 2010-04-15
watch this space for valuable addenda -- BIG MONEY! BIG PRIZES! YOU LOVE IT!!

Motivation

● Commercial processor built around binary translation.
● Anyone remember the M680x0 emulator for PowerPC Macs?(*)
● How about PRISM's Epicode + Mica? VEST/AEST on Alpha?(**)

● One of two major GP-VLIW implementations.
● Yes, I absolutely am discounting Multiflow Computer's 125 sales.

● Integrated design of architecture and translator.

● Interesting design space:
● An attempt to reduce power and size of PC2001/x86.
● Not targeted at embedded space, where cost is a main motivator!

“A Microprogrammed Implementation of an Architecture Simulation Language” (1977)

(*) Tom Hormby's IBM, Apple, RISC, and the Roots of the PowerPC and Steven Levy's
Insanely Great. (**) Paul Bolotoff's Alpha: The History in Facts and Comments.

Anti-Motivation

(*) 1917-10-23, paraphrased from John Reed's Ten Days That Shook the World (1919)

pull over; that table's too fat (woop woop)

Sources: Transmeta product datasheets, UIUC CS433 “Processor Presentation Series” notes
for Transmeta Crusoe, sandpile.org IA-32 Implementation Guides for Crusoe/Efficeon

Initial reactions, pre-paper:

● Anyone can run an x86 translator/emulator
● Why wouldn't Intel just build this instead?
● P6 was doing hardware CISC-to-RISC (CRISC) in 1995

...though dissipating serious wattage to do so...

● An ad hoc taxonomy of binaries:
● Targeted (source- and compiler-optimized for this model)
● Native (compiler-optimized for this model)

● Fat binaries are native for multiple models, but not forward-native
● Legacy (“optimized” for minimum compatible feature set)
● Foreign (ISA-incompatible)

● Without an ISA to target, all binaries are foreign!
● No programs are designed for our architectural tricks
● Recompilation can't help us, even if we have source
● Upshot: Transmeta's no better than its binary translator.

● Transmeta's hardware and translator must beat out native hardware and a
compiler. Hardware differentiation is difficult to utilize, and in any case
limited to the CPU.

A straw poll!

Can a translator beat a compiler?

Show of hands?

● McManus, a fisher of men, gets a +1 bonus from Charisma

● Railing gets a conciliatory, but useless,+π/8 from General Excellence

Zl bcvavba: uvtuyl qhovbhf;
pregnvayl abg n ohfvarff gb trg vagb(*).

(*) Toggle ROT-13 in Vim with “ggVGg?” (as you might expect)

π

A straw poll!

Can a translator beat a compiler?

Show of hands?

My opinion: highly dubious;
certainly not a business to get into.

The Claims:

● Avoid X86's decoding frontend for major power savings.
● But running the Code-Morphing™ Software means more time

working, and thus less time powered down...
● Intel introduced an MSROM for low-power provision of

complicated instructions in the Core™ microarchitecture.

● In-order VLIW can compete with out-of-order CRISC.
● Large instruction caches and 64/128-bit operation
● Remember, VLIW != EPIC and Transmeta != Itanium!

● Surprising! The translator almost certainly does dependency analysis (it's
effectively replacing hardware OOO) – you oughtn't need source to annotate.

● Real power, size and heat savings are effected.
● Size: Half the die of a “mobile PII” (but 70% of “mobile PIII”)
● LongRun™ Power Management: 0.4W to 2.2W(!) maximum.

● Full implementation of (then-nascent) ACPI C-, V- and P-states
● Intel had to wait for Pentium®-M's SpeedStep®, AMD's PowerNow!™(*)

(*) See “Analysis of Thermal Monitor features of the Intel® Pentium® M Processor” and
“Energy-efficient Processor Design Using Multiple Domains with Dynamic V&F Scaling.”

When Klaiber uses quotes, he lies:

“COINCIDENTALLY, hiding the chip’s ISA behind a software layer
also avoids a problem that has in the past hampered the acceptance
of VLIW machines. A traditional VLIW exposes details of the
processor pipeline to the compiler, hence any change to that
pipeline would require all existing binaries to be recompiled to make
them run on the new hardware. Note that even traditional x86
processors suffer from a related problem: while old applications will
run correctly on a new processor, they usually need to be recompiled
to take full advantage of the new processor implementation. This is
not a problem on Crusoe processors, since in effect, the Code-
Morphing™ software always transparently “recompiles” and
optimizes the x86 code it is running.” (page 8)

I'm afraid, Mssr. Klaiber, that it'll take more than quotation
marks to make recompilation from binary translation.

Proving the 90/10 rule via...Jungian reference?

...exactly whom is being addressed here?

Beyond that: why would meaningless benchmarks be used?
Why worry about something so clearly inadmissible?

“Some benchmark programs attempt to exercise a large
set of features in a small amount of time, with little
repetition -- a pattern that differs significantly from
normal usage. (When was the last time you used every
other feature of Microsoft Word exactly once, over a
period of a minute?)” (page 9)

Without nicotine's immediate infusion, I will feed the
Student Center ATM its long-craved stray cats.

...so let's reconvene in 5 minutes. In the meantime,
meditate upon FORTRAN's Eightfold Path of Virtue.

Thanks!
That hit the spot!

Let us return to Klaiber 1990, aka BULLSHIT PATTY BETWEEN TWO SLICES OF LIES.

Further questionable assertions

Nothing's won here; by virtue of being well-known, we can assume such
optimizations to have been performed during the original compilation.

Is Klaiber telling a baldfaced lie? Does he suffer grave delusions
regarding computability theory? Do I? I'm pretty sure this is nonsense. (*)

(*) Exhibits A and B: “Macro-” and “Micro-fusion”. Intel 64 and IA-32 Software Optimization
Guide, from the Core™ microarchitecture onwards.

“In a second pass, the optimizer applies well-known compiler optimizations to
the code, such as common subexpression elimination, loop invariant
removal, or dead code elimination (including unnecessary settings of the
condition codes).” (page 11)

“This exemplifies optimizations that a hardware-only x86
implementation cannot do: a software-based translation
system can actually eliminate atoms from the instruction
stream, rather than just reorder them.” (ibid)

Two points well worth repeating

Is the work done to perform the translations truly less than
the work done to decode instructions in hardware? (**)

 (*) Advocates of EPIC (primarily at Intel and HP) may yet beg to differ. (**) By the same
90/10 rule, how does the Loop Stream Detector alter this equation (Core™ and Nehalem)?

“Though the molecules are executed in-order by the hardware, they perform
the work of the original x86 instructions out of order.” (page 12)

“The molecules explicitly encode (*) the instruction-level parallelism, hence
they can be executed by a simple (and hence fast and low-power) VLIW
engine; the hardware need not perform any complex instruction
reordering itself.” (ibid)

What?

Does this sound like an ROB to anyone else?

Weren't we trying to avoid an ROB?

Clearly!

“Normal atoms only update the working copy of the register. When execution reaches
the end of a translation without encountering an exception, a special commit operation
copies all working registers into their corresponding shadow registers, indeed
committing the work done in the translation. On the other hand, if any x86-level
exception occurs inside the translation, the runtime system undoes the effects of all
molecules executed since the start of the translation. This is done via a rollback
operation which copies the shadow register values (last committed at the end of the
previous translation) back into the working registers.” (page 13)

Since the dispatch unit reorders the micro-ops as required to keep the functional
units busy, a separate piece of hardware, the in-order retire unit, is needed to
effectively reconstruct the order of the original x86 instructions, and ensure that
they take effect in proper order. Clearly, this type of processor hardware is much
more complex than the Crusoe processor’s simple VLIW engine.

I do not think that word means what you think it means.

We can agree that this requires physical addresses?

What happens if the reordered code happens to manage
page tables? Is this always safe?

Perhaps someone might offer a proof?

“Unlikely” is fair, since most deps are detected by the
translator. This is only for truly dynamic deps.

See also Itanium's NaT and NaTVal 1-bit “deferral token” registers for misspeculation (Intel
Itanium® Architecture Software Developer's Reference).

“The Crusoe host provides innovative alias hardware that addresses this problem. When the
translator moves a load operation ahead of a store operation, it converts the load into a load-
and-protect (*) (which in addition to loading data also records the address and size of the data
loaded) and the store into a store-under-alias-mask (which checks for protected regions). In
the (unlikely) event that the store operation overwrites the previously loaded data, the
processor raises an exception and the runtime system can take corrective action. Using this
mechanism, it is always safe to reorder memory loads and stores.” (page 14)

Inventing memory protection.

...yes, we mark code read-only, unless (like Xorg's OpenGL
or many virtualization systems) we want to write to it. (*)
This is why we have mprotect(2) and mremap(2).

Instruction caches have the same issues.

...and, is there really no compilation context preserved
across process lifetimes? Have fun, “find / -exec foo {} \;” (**)

(*) It was the NX bit which Intel added later; write protection has existed for five presidential
administrations. (**) For this and other reasons, we use “find / -print0 | xargs -0 foo”, right?

“At times, x86 instructions in memory get overwritten, either because the operating system is
loading a new program, or because an application is using self-modifying code. When this
happens to code that has already been translated, the Code Morphing software needs to be
notified to keep it from erroneously executing a translation for the old code. To this end,
whenever the system translates a block of x86 code, it write-protects the page of x86 memory
containing that code.” (page 14)

 1

“The Technology Behind Crusoe™ Processors: Low-Power
 x86-Compatible Processors Implemented with
 Code-Morphing™ Software”

Alexander Klaiber
Transmeta Corporation

January 2000

presented by nick black <nickblack@linux.com> for cs8803dc 2010-04-15
watch this space for valuable addenda -- BIG MONEY! BIG PRIZES! YOU LOVE IT!!

 2

Motivation

● Commercial processor built around binary translation.
● Anyone remember the M680x0 emulator for PowerPC Macs?(*)
● How about PRISM's Epicode + Mica? VEST/AEST on Alpha?(**)

● One of two major GP-VLIW implementations.
● Yes, I absolutely am discounting Multiflow Computer's 125 sales.

● Integrated design of architecture and translator.

● Interesting design space:
● An attempt to reduce power and size of PC2001/x86.
● Not targeted at embedded space, where cost is a main motivator!

“A Microprogrammed Implementation of an Architecture Simulation Language” (1977)

(*) Tom Hormby's IBM, Apple, RISC, and the Roots of the PowerPC and Steven Levy's
Insanely Great. (**) Paul Bolotoff's Alpha: The History in Facts and Comments.

Embedded space can get higher performance due to
single-nature approach of chips (especially
ASIC/FPGA). We want a general-purpose CPU.

In fact, we want the most general-purpose CPU: one
designed at its very core to run other CPU's binaries
(ie, no planned use of compilers targeting
Transmeta)

“Rubbish heap of history”: Trotsky's phrase for the
Mansheviks (Russian word for “minority” vs Lenin's
Bolsheviks (“majority”))

 3

Anti-Motivation

(*) 1917-10-23, paraphrased from John Reed's Ten Days That Shook the World (1919)

Embedded space can get higher performance due to
single-nature approach of chips (especially
ASIC/FPGA). We want a general-purpose CPU.

In fact, we want the most general-purpose CPU: one
designed at its very core to run other CPU's binaries
(ie, no planned use of compilers targeting
Transmeta)

“Rubbish heap of history”: Trotsky's phrase for the
Mansheviks (Russian word for “minority” vs Lenin's
Bolsheviks (“majority”))

 4

pull over; that table's too fat (woop woop)

Sources: Transmeta product datasheets, UIUC CS433 “Processor Presentation Series” notes
for Transmeta Crusoe, sandpile.org IA-32 Implementation Guides for Crusoe/Efficeon

 5

Initial reactions, pre-paper:

● Anyone can run an x86 translator/emulator
● Why wouldn't Intel just build this instead?
● P6 was doing hardware CISC-to-RISC (CRISC) in 1995

...though dissipating serious wattage to do so...

● An ad hoc taxonomy of binaries:
● Targeted (source- and compiler-optimized for this model)
● Native (compiler-optimized for this model)

● Fat binaries are native for multiple models, but not forward-native
● Legacy (“optimized” for minimum compatible feature set)
● Foreign (ISA-incompatible)

● Without an ISA to target, all binaries are foreign!
● No programs are designed for our architectural tricks
● Recompilation can't help us, even if we have source
● Upshot: Transmeta's no better than its binary translator.

● Transmeta's hardware and translator must beat out native hardware and a
compiler. Hardware differentiation is difficult to utilize, and in any case
limited to the CPU.

● “Closed-source” often means “legacy” :(

 6

A straw poll!

Can a translator beat a compiler?

Show of hands?

● McManus, a fisher of men, gets a +1 bonus from Charisma

● Railing gets a conciliatory, but useless,+π/8 from General Excellence

Zl bcvavba: uvtuyl qhovbhf;
pregnvayl abg n ohfvarff gb trg vagb(*).

(*) Toggle ROT-13 in Vim with “ggVGg?” (as you might expect)

π

 7

A straw poll!

Can a translator beat a compiler?

Show of hands?

My opinion: highly dubious;
certainly not a business to get into.

 8

The Claims:

● Avoid X86's decoding frontend for major power savings.
● But running the Code-Morphing™ Software means more time

working, and thus less time powered down...
● Intel introduced an MSROM for low-power provision of

complicated instructions in the Core™ microarchitecture.

● In-order VLIW can compete with out-of-order CRISC.
● Large instruction caches and 64/128-bit operation
● Remember, VLIW != EPIC and Transmeta != Itanium!

● Surprising! The translator almost certainly does dependency analysis (it's
effectively replacing hardware OOO) – you oughtn't need source to annotate.

● Real power, size and heat savings are effected.
● Size: Half the die of a “mobile PII” (but 70% of “mobile PIII”)
● LongRun™ Power Management: 0.4W to 2.2W(!) maximum.

● Full implementation of (then-nascent) ACPI C-, V- and P-states
● Intel had to wait for Pentium®-M's SpeedStep®, AMD's PowerNow!™(*)

(*) See “Analysis of Thermal Monitor features of the Intel® Pentium® M Processor” and
“Energy-efficient Processor Design Using Multiple Domains with Dynamic V&F Scaling.”

Note that the awesome graphic is comparing a
desktop PIII to the Crusoe, whereas the (first) size
table is all mobile comparisons. Tricky!

● “Closed-source” often means “legacy” :(

 9

When Klaiber uses quotes, he lies:

“COINCIDENTALLY, hiding the chip’s ISA behind a software layer
also avoids a problem that has in the past hampered the acceptance
of VLIW machines. A traditional VLIW exposes details of the
processor pipeline to the compiler, hence any change to that
pipeline would require all existing binaries to be recompiled to make
them run on the new hardware. Note that even traditional x86
processors suffer from a related problem: while old applications will
run correctly on a new processor, they usually need to be recompiled
to take full advantage of the new processor implementation. This is
not a problem on Crusoe processors, since in effect, the Code-
Morphing™ software always transparently “recompiles” and
optimizes the x86 code it is running.” (page 8)

I'm afraid, Mssr. Klaiber, that it'll take more than quotation
marks to make recompilation from binary translation.

Note that the awesome graphic is comparing a
desktop PIII to the Crusoe, whereas the (first) size
table is all mobile comparisons. Tricky!

● “Closed-source” often means “legacy” :(

 10

Proving the 90/10 rule via...Jungian reference?

...exactly whom is being addressed here?

Beyond that: why would meaningless benchmarks be used?
Why worry about something so clearly inadmissible?

“Some benchmark programs attempt to exercise a large
set of features in a small amount of time, with little
repetition -- a pattern that differs significantly from
normal usage. (When was the last time you used every
other feature of Microsoft Word exactly once, over a
period of a minute?)” (page 9)

Note that the awesome graphic is comparing a
desktop PIII to the Crusoe, whereas the (first) size
table is all mobile comparisons. Tricky!

● “Closed-source” often means “legacy” :(

 11

Without nicotine's immediate infusion, I will feed the
Student Center ATM its long-craved stray cats.

...so let's reconvene in 5 minutes. In the meantime,
meditate upon FORTRAN's Eightfold Path of Virtue.

 12

Thanks!
That hit the spot!

Let us return to Klaiber 1990, aka BULLSHIT PATTY BETWEEN TWO SLICES OF LIES.

 13

Further questionable assertions

Nothing's won here; by virtue of being well-known, we can assume such
optimizations to have been performed during the original compilation.

Is Klaiber telling a baldfaced lie? Does he suffer grave delusions
regarding computability theory? Do I? I'm pretty sure this is nonsense. (*)

(*) Exhibits A and B: “Macro-” and “Micro-fusion”. Intel 64 and IA-32 Software Optimization
Guide, from the Core™ microarchitecture onwards.

“In a second pass, the optimizer applies well-known compiler optimizations to
the code, such as common subexpression elimination, loop invariant
removal, or dead code elimination (including unnecessary settings of the
condition codes).” (page 11)

“This exemplifies optimizations that a hardware-only x86
implementation cannot do: a software-based translation
system can actually eliminate atoms from the instruction
stream, rather than just reorder them.” (ibid)

 14

Two points well worth repeating

Is the work done to perform the translations truly less than
the work done to decode instructions in hardware? (**)

 (*) Advocates of EPIC (primarily at Intel and HP) may yet beg to differ. (**) By the same
90/10 rule, how does the Loop Stream Detector alter this equation (Core™ and Nehalem)?

“Though the molecules are executed in-order by the hardware, they perform
the work of the original x86 instructions out of order.” (page 12)

“The molecules explicitly encode (*) the instruction-level parallelism, hence
they can be executed by a simple (and hence fast and low-power) VLIW
engine; the hardware need not perform any complex instruction
reordering itself.” (ibid)

 15

What?

Does this sound like an ROB to anyone else?

Weren't we trying to avoid an ROB?

Clearly!

“Normal atoms only update the working copy of the register. When execution reaches
the end of a translation without encountering an exception, a special commit operation
copies all working registers into their corresponding shadow registers, indeed
committing the work done in the translation. On the other hand, if any x86-level
exception occurs inside the translation, the runtime system undoes the effects of all
molecules executed since the start of the translation. This is done via a rollback
operation which copies the shadow register values (last committed at the end of the
previous translation) back into the working registers.” (page 13)

Since the dispatch unit reorders the micro-ops as required to keep the functional
units busy, a separate piece of hardware, the in-order retire unit, is needed to
effectively reconstruct the order of the original x86 instructions, and ensure that
they take effect in proper order. Clearly, this type of processor hardware is much
more complex than the Crusoe processor’s simple VLIW engine.

 16

I do not think that word means what you think it means.

We can agree that this requires physical addresses?

What happens if the reordered code happens to manage
page tables? Is this always safe?

Perhaps someone might offer a proof?

“Unlikely” is fair, since most deps are detected by the
translator. This is only for truly dynamic deps.

See also Itanium's NaT and NaTVal 1-bit “deferral token” registers for misspeculation (Intel
Itanium® Architecture Software Developer's Reference).

“The Crusoe host provides innovative alias hardware that addresses this problem. When the
translator moves a load operation ahead of a store operation, it converts the load into a load-
and-protect (*) (which in addition to loading data also records the address and size of the data
loaded) and the store into a store-under-alias-mask (which checks for protected regions). In
the (unlikely) event that the store operation overwrites the previously loaded data, the
processor raises an exception and the runtime system can take corrective action. Using this
mechanism, it is always safe to reorder memory loads and stores.” (page 14)

 17

Inventing memory protection.

...yes, we mark code read-only, unless (like Xorg's OpenGL
or many virtualization systems) we want to write to it. (*)
This is why we have mprotect(2) and mremap(2).

Instruction caches have the same issues.

...and, is there really no compilation context preserved
across process lifetimes? Have fun, “find / -exec foo {} \;” (**)

(*) It was the NX bit which Intel added later; write protection has existed for five presidential
administrations. (**) For this and other reasons, we use “find / -print0 | xargs -0 foo”, right?

“At times, x86 instructions in memory get overwritten, either because the operating system is
loading a new program, or because an application is using self-modifying code. When this
happens to code that has already been translated, the Code Morphing software needs to be
notified to keep it from erroneously executing a translation for the old code. To this end,
whenever the system translates a block of x86 code, it write-protects the page of x86 memory
containing that code.” (page 14)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

